The Grothendieck Construction and Gradings for Enriched Categories

نویسنده

  • Dai Tamaki
چکیده

The Grothendieck construction is a process to form a single category from a diagram of small categories. In this paper, we extend the definition of the Grothendieck construction to diagrams of small categories enriched over a symmetric monoidal category satisfying certain conditions. Symmetric monoidal categories satisfying the conditions in this paper include the category of k-modules over a commutative ring k, the category of chain complexes, the category of simplicial sets, the category of topological spaces, and the category of modern spectra. In particular, we obtain a generalization of the orbit category construction in [CM06]. We also extend the notion of graded categories and show that the Grothendieck construction takes values in the category of graded categories. Our definition of graded category does not require any coproduct decompositions and generalizes k-linear graded categories indexed by small categories defined in [Low08]. There are two popular ways to construct functors from the category of graded categories to the category of oplax functors. One of them is the smash product construction defined and studied in [CM06, Asaa, Asab] for k-linear categories and the other one is the fiber functor. We construct extensions of these functors for enriched categories and show that they are “right adjoint” to the Grothendieck construction in suitable senses. As a byproduct, we obtain a new short description of small enriched categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence and quantale-enriched categories

Generalising Nachbin's theory of ``topology and order'', in this paper we   continue the study of quantale-enriched categories equipped with a compact   Hausdorff topology. We compare these $V$-categorical compact Hausdorff spaces   with ultrafilter-quantale-enriched categories, and show that the presence of a   compact Hausdorff topology guarantees Cauchy completeness and (suitably   defined) ...

متن کامل

Diagrams Indexed by Grothendieck Constructions and Stacks on Stacks

Let I be a small indexing category, G : I → Cat be a functor and BG ∈ Cat denote the Grothendieck construction on G. We define and study Quillen pairs between the category of diagrams of simplicial sets (resp. categories) indexed on BG and the category of I-diagrams over N(G) (resp. G). As an application we obtain a Quillen equivalence between the categories of presheaves of simplicial sets (re...

متن کامل

Diagrams Indexed by Grothendieck Constructions

Let I be a small indexing category, G : I → Cat be a functor and BG ∈ Cat denote the Grothendieck construction on G. We define and study Quillen pairs between the category of diagrams of simplicial sets (resp. categories) indexed on BG and the category of I-diagrams over N(G) (resp. G). As an application we obtain a Quillen equivalence between the categories of presheaves of simplicial sets (re...

متن کامل

Classifying Spaces for Braided Monoidal Categories and Lax Diagrams of Bicategories

This work contributes to clarifying several relationships between certain higher categorical structures and the homotopy type of their classifying spaces. Bicategories (in particular monoidal categories) have well understood simple geometric realizations, and we here deal with homotopy types represented by lax diagrams of bicategories, that is, lax functors to the tricategory of bicategories. I...

متن کامل

Left Determined Model Structures for Locally Presentable Categories

We extend a result of Cisinski on the construction of cofibrantly generated model structures from (Grothendieck) toposes to locally presentable categories and from monomorphism to more general cofibrations. As in the original case, under additional conditions, the resulting model structures are ”left determined” in the sense of Rosický and Tholen.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009